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The coefficient of radial spread of liquid was determined from radial distribution of a tracer 
on 3 packings of spheres of different diameter and 5 packings of Raschig rings. To evaluate the 
data a generalized model was used accounting for possible non-uniformity of the flow of the 
liquid carrying the tracer, and a simplified model assuming constant density of wetting throughout 
the column. Although the coefficients of radial spread following from the two models do not 
differ appreciably the agreement between the experiment and the theoretical distribution given 
by the generalized model improves by 50- 60%. The scatter of the experiment about the theoretical 
distribution of the tracer provided an estimate of the number of liquid rivulets trickling down 
the packing and their mutual mixing. The results suggest that under very low densities of wetting 
the number of rivulets is given by the geometry of the packing, e.g. by the number of elements 
of packing appearing sectioned in a horizontal cross section of the column. At a relatively low 
density of wetting mutual mixing of the rivulets occurs and intensifies with increasing flow rate 
of liquid. 

As more realistic for description of liquid distribution in random packings appear 
the two-dimensional models which, in contrast to one-dimensional ones, account 
also for possible non-uniformities in the radial profile. This paper deals with the me
thod of evaluating the coefficient of radial spread and the character of liquid distri
bution in the packing. The method using a tracer was chosen for experiments. To eva
luate the data the well-known model assuming uniform flow of liquid was used as 
well as a generalized model accounting for possible non-uniformities of the flow of li
quid carrying the tracer due to the gradual build-up of the wall flow. 

THEORETICAL 

A balance on the tracer carried by the liquid trickling freely down the packing in a cy
lindrical column may be written e.g. in the form 

Part IX in the series Distribution of Liquid over a Random Packing; Part VIII: This 
Journal38, 2865 (1973) . 
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o(fc) = !!_ ~ (r o(fc)) , 
oz r or or 

(1) 

if it is assumed that the coefficient of radial spread is a constant independent of the 
density of wetting. 

Under a generally non-uniform distribution of the density of wetting Eq. (1) 
must be put e.g. in the form 

Df[ o2c + .!_ ~] = ! ~ - 2D ~ i}l_' 
or2 r or cz or or 

(2) 

where for the distribution off one can write from a balance on liquid the following 
equation 

(3) 

Thus it is assumed that the mechanism of the spread of the carrier liquid over the 
packing is the same as that of the spread of the tracer carried by the liquid trickling 
down the packing. Hence the coefficients in Eqs (2) and (3) are identical. In a parti
cular case of the uniform flow of liquid over the packing Eq. (2) simplifies to 

D -+ - - --[o
2c 1 oc] oc 

or2 r or - oz. 
(2a) 

By solving Eq. (3) for a uniformly wetted column one obtains the following ex
pression1 

where Band Care dimensionless parameters of the following boundary condition 

- of*, = B(f* - CW*), r* = 1 
or*l 

and the eigenvalues qn satisfy the equation 

(4b) 

(4c) 
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The Radial Spread in a Trickle Bed 2009 

Solutions to Eq. (2a) for various initial conditions may be found in standard 
textbooks2

• Assuming that the liquid entering the packing at its top in the region 
0 ~ r* < ri carries the tracer, and, further, that the tracer cannot escape from the 
packing, i.e. 

0 ~ r* < ri , z = 0 , c* = 1 ; ri < r* ~ 1 , z = 0 , c* = 0 ; 

r* = 1 , r* = 0 , (oc*for) = 0 (5a)-(5c) 

the solution may be written as 

(6) 

where for qn we have that J 1(qn) = 0. 

The last model served to evaluate the data in all papers dealing with the distribu
tion of the tracer in random packings, e.g. ref. 3 • At the same time, however, the 
literature indicates4

-
8 that even a perfectly uniform wetting of the column top 

does not ensure the uniformity of the flow in all column cross sections. In such case 
it is more proper to use the more general model formulated in Eq. (2) and to derive 
the necessary expressions containing the density of wetting of the carrier liquid 
from Eq. (4a). 

EXPERIMENTAL 

The distribution of the tracer over the packing. The packing at its top was uniformly wetted 
by liquid ''tagged" by the tracer within the radius r 1 = 1/ 2. The packing rested on a set of con
centric annuli directing the liquid into separate collecting vessels. Having reached the steady 
state the liquid in individual collecting vessels was sampled and analyzed and the results compared 
with the predicted distribution of the tracer according to the chosen model. 

Apparatus. The glass column was 291 mm in inner diameter. The packing was supported by 12 
concentric annuli about 10 mm wide. The set of annuli was further equipped with a wall flow 
separating device. The distributor was a brass cylindrical vessel with its outer diameter equalling 
the inner diameter of the column equipped with 2 mm hollow rivets in the bottom. The rivets 
were arranged in a square pitch at the density 1 rivet per square centimeter. The total number 
of rivets was 664. There were about 7 mm long nylon loops mounted in the opening of each 
rivet facilitating the dripping of liquid at low discharge velocities4

•
5

• The space above the bottom 
of the distributor was divided into two mutually isolated chambers each with its own independent 
feed of liquid. The inner of the chambers was of circular cross section of the diameter equalling 
one half of the column diameter, i.e. the area of cross section equalling 1/4 of the column cross 
section. This chamber was supplied with water solution of the tracer, the outer chamber was fed 
with tap water at 25°C. The packings used were glass spheres 10, 15 and 20 mm in diameter 
and Raschig rings 8, 10, 15, 20 and 25 mm in diameter. The tracer liquid was aqueous solution 
of potassium chloride at concentration of 1 g/litre. The liquids were fed into the chambers of the 
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distributor in the ratio of the flow rates 1 : 3 in order to keep the density of wetting on the top 
uniform. The correct ratio of the flow rates was checked from the balance on the tracer on the exit 
of the column. 

The experimental routine. The measurements were carried out on layers of packing 200, 300, 
400 and 500 mm high. The routine was started by flooding the packing with water and setting 
then the flow rates of both liquids (1 : 3) at the values corresponding to the preselected mean 
density of wetting. Having reached the steady state the liquid draining from individual openings 
and the wall flow separator was mec:hanically diverted to the collecting vessels to collect samples 
of about 0·5- 2 litres. About 50 ml samples were then taken from each collecting vessel and the 
set of 13 samples was supplemented with a sample of the inlet tracer solution as well as the tap 
water from the storage tanks. The analysis of the sample was carried out by conductometry. 

Data processing. The results of the analysis were processed to give the dimensionless concentra
tion of the tracer in twelve collecting annuli and in the wall flow, c* (the real dimensional con
centration scaled by the initial concentration of the tracer solution ci). The mean radii of the col
lecting annuli, r:, were computed from the outer and the inner radius r~, rf from t~e relation9 

(7) 

The experimental profiles of the dimensionless concentration were then compared with the 
values computed from Eq. (6) for various values of the dimensionless height of the packing, 
To, observing simultaneously the residual sum of square deviations with the aim to find To cor
responding to the minimum of the residual sum. The computational routine was based on taking 
a sufficiently wide interval of To encompassing the minimum and subsequent narrowing the inter
val. The computation was terminated when the width of the interval amounted to less than 3% 
of its average value taken for the result. The resulting To then served to compute the coefficient 
of radial spread D. As an advantage of this approach , in contrast e.g. to the method of moments, 
is that each experimental point of the concentration profile is assigned the same statistical 
weight10 . 

As has been pointed in the theoretical pa rt ev.en perfect uniformity of wetting of the column 
top does not ensure the uniformity of the flow in all cross se~tions as a consequence of the form~
.tion of the wall flow. Only those packings ~haracterized by an infinite value of the parameter C 
(see Eq. (4b)) are perfectly free of the wall effect. In order that the wall flow may achieve a sub
stantial degree (e.g. 20% of the total flow rate of liquid) the value of C would have to drop to C = 
= 4. In case of Raschig rings, which are more apt to wall flow formation, this value will be reached 
if the column-to-packing ratio drops to about 5 (dc /dp) = 11. For even lower values of this ratio 
the magnitude of the wall flow will progressively increase. Analogous critical value for a packing 
of spheres is approximately one half of the former 5

• From this reasoning it follows that evaluation 
of the results according to the model formulated in Eq. (2) could provide results substantially 
different from those of the model in Eq. (6) only in case of 25 mm Raschig rings. 

For numerical purposes Eq. (2) was rendered dimensionless as follows 

cP c* 1 oc* oc* oc* 0 In/* 
ii? + -;:; Tr = 8To - 2 8r* a;:;- · (8) 

The initial condition is identical to that in Eq. (5a) where ri = 1/2. For simplicity the boundary 
condition is formulated also identically as that in Eq. (5c) although it must be realized that.this 
condition for the given model provides only for the convective transport of the tracer into the 
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wall flow, i.e. together with the carrier liquid, and not by diffusion. Thus the condition (5c) is 
acceptable only in the initial stage of the distribution when the concentration gradient as well as 
the concentration of the tracer near the wall are both small. Retaining the same boundary condi
tion also in subsequent stages of the distribution would mean that after formation of the equi
librium wall flow (which in case of the uniform initial wetting may take place quite rapidly no ad
ditional tracer could be transferred into the wall flow despite of possibly different concentra
tions in the liquid near the wall and in the wall flow. This situation is of course at odds with 
reality. However, to formulate a more general condition would require an independent experi
mental study beyond the scope of this work. Besides, the experimentally found concentrations 
in the wall flow were in all cas·~ s small which makes the condition (5c) satisfactory for the purposes 
of this work. 

Eq. (8) was solved numerically using an implicit technique of solution. For reasons following 
from considerations about the magnitude of the wall flow and for the economy of the com
putation (the search of the optimum To for a single concentration profile took about three 
minutes on the Tesla 200 computer) the more general model was applied only in case of 25 mm 
Raschig rings. For the necessary parameters of the boundary condition, Eq. (4b), we took5 

B = 7·0 and C = 3·12. For each numerical step in direction of the dimensionless height To the 
program evaluated the residual sum of square deviations of the experimental profile with the 
strategy aimed at finding the optimum To. 

RESULTS AND DISCUSSION 

The coefficient of radial spread. The coefficients of radial spread were evaluated 
from Eq. ( 6) for all packings. Both models were used in case of 25 mm Raschig rings, 
i.e. also the numerical solution of Eq. (8). From comparison of the results according 
to both models it follows that the differences in D are small, usually only a few 
percent. However, substantial improvement in favour of the more complex model 
accounting for the non- uniformities of the flow of the carrier liquid was achieved 
in the residual sum of square deviations. The improvement of the fit ot the experi
mental and the predicted distribution increases with increasing height of the packing, 
because the deviations from the uniform flow also grow with the packing height. 
For a 400 mm high layer of packing the decrease of the residual sum of square 
deviations is already very marked and in most cases exceeds 50% of the residual 
sum of the model assuming the uniform flow. From these observations it follows 
that the model represented by Eq. (8) describes substantially better the real situation 
on the packing despite of the fact that the differences in D domain are not conspicuous. 
The situation is illustrated in Fig. 1 plotting the experimental points of the tracer 
distribution for an experiment on 400 mm layer of 25 mm Raschig rings and the 
mean density of wetting fo = 0·008 mfs. The curve 2 represents the solutions of Eq. 
(8) for the numerically found optimum value D = 2·182 mm (parameters B and C 
taken respectively 5 equal 7·0 and 3·12). The residual sum of square deviations amount
ed to 6·1495 x 10- 3 • The curve 1 represents the solution (6) for the optimum value 
D = 2·188 mm and the residual sum in this case equalled 1·3646. 10- 2

• 

Resulting values of D for all packings are plotted in Figs 2-4 as functions of the 
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mean density of wetting. Full line in each figure passes through average D computed 
from results on various heights of packing. In computing the average individual 
values of D were weighed by the inverse of the residual sum of square deviations 
from the model distribution. From the figures it is apparent that D may be well 
regarded as independent of the density of wetting. Certain correlation appearing 
in some cases at the lowest mean densities of wetting is apparently caused by poorly 
reproducible peculiarities of distribution under low liquid flow rates. Increased 
scatter of the results of D on individual heights of the packing is typical for this 
region. Increased scatter display also packings of large characteristic dimensions 
(Fig. 4). 

In view of the established independence of D on the mean density of wetting each 
packing diameter was assigned its characteristic average value of D. In the calculation 
of the average D the individual values were again weighed by the inverse of the resi
dual sum of square deviations. The found averages are shown in Fig. 5. In contrast 
to the conclusion of the previous papers9

•
11 D cannot be regarded for a given type 

of the packing as independent of the size of the packing element. The values of D 
from this work agree well with the universal values for spheres ( 1· 383 mm) and Ra
schig rings (2·123 mm) reported earlier11 in case of 15 and 20 mm spheres and 20 

FIG. ! 

The Profile of Tracer Concentration on 
a Packing of Raschig Rings dP = 25 mm, 
z = 400 mm, [0 = 0·008 m js 

1 Computed from Eq. (6), 2 computed 
from Eqs (4a) and (8) for B = 7 and C = 
= 3·12. 
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Fro. 2 

The Coefficient of Radial Spread as a Func
tion of the Mean Density of Wetting for 
Spherical Packing 

1 dP = 10 mm; 2 dP = 15 mm; 3 dP = 
= 20 mm; () z = 300 mm, () z = 400 mm, 
• z= 500mm. 
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and 25 mm Raschig rings. The deviations toward lower values occur for smaller 
packings which were measured earlier11

. These differences may be caused by large 
gradients of the density of wetting existing in the packing under measurements 
based on the spread of liquid 11 , not the tracer, and thus by certain differences in me
chanisms of distribution of the liquid and the tracer. In such a case, of course, the 
coefficients D appearing in Eqs (2a) and (3) would be different. 

As it is seen from Fig. 5 the dependence of D on the characteristic dimension of the 
packing is not simple and no attempt was made to correlate D and dP in view of the 
limited number of data. It is noted, however, that the results with Raschig rings 
would obey fairly well the correlation D = 0·169 x d~· 5 (both quantities in centi
meters) published by Onda and coworkers. 12 This correlation was evaluated from 
tracer experiments of several authors on Raschig rings and Berl saddles. 

The estimate of the number of liquid rivulets trickling down the packing. Both the 
above models describe the distribution of the tracer as well as the trickling liquid 
by means of the continuous functions c and f. In reality the liquid trickles down 
under low densities of wetting in the form of rivulets forming with increasing density 
of wetting a more or less continuous film of liquid on the surface of the packing. 
The continuous functions c and f are thus a certain abstraction of the reality and 
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FIG. 3 

The Coefficient of Radial Spread as a Func
tion of the Mean Density of Wetting for 
Raschig Rings 

1 dP = 8 mm; 2 dP = 10 mm; 3 dP = 
= I 5 mm, o z = 200 mm, () z = 300 mm, 
{) z = 400 mm. 
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The Coefficient of Radial Spread as a Func
tion of the Mean Density of Wetting for 
Raschig Rings 

1 dP = 20 mm; 2 dP = 25 mm; o z = 
= 200 mm, () z = 300 mm, () z = 400 mm. 
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changing to a discretized model would require the knowledge of the intensity of indi
vidual rivulets. The fit of the predicted and the true conditions on the packing will 
necessarily be the closer the greater the number of liquid rivulets. 

Let us suppose now that the liquid trickles down the packing in the form of N 
rivulets uniformly distributed over the column cross section. The rivulets do not 
interfe~e ·and mix mutually (coalescence and spliting) and their number remains con
stant along the height of the column. Let us denote further by P; the fractional area 
of the i-th annulus collecting the liquid at the bottom of the packing. Subscript i 

1: 

varies between 1 and k, where k is the total number of the annuli and L P; = 1. 
i=l 

Thus in accord with our experimental arrangement N/4 rivulets at the top are KCl
-traced and the rest are free of the tracer. The total number of rivulets, both the KCl-
-traced and the tracer-free ones, draining at the bottom into the i-th annulus equals 
NP;. On taking the dimensionless concentration c* so as to make the inlet"concentra
tion of the tracer equal unity, (see Eq. (5a), (5b)), the number of tracer containing 
rivulets draining through the same annulus equals c*NP;. Denoting the dimen
sionless concentration given by the theoretical model as ci and the experimentally 

FIG. 5 

Characteristic Values of the Coefficient of Ra
dial Spread as a Function of dP 

1 Spheres; 2 Raschig rings. 
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FIG. 6 

The Number of Rivulets Trickling in the 
Packing of Raschig Rings as a Function 
of the Mean Density of Wetting · 

1 Spheres; 2 Raschig rings, o dP = 8 mm; 
<D dP = 10 mm; e dP = 15 mm; 'i) dP = 
= 20 mm; • dP = 25 mm. 
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found concentration as c: the expression for the x2 (chi-square) quantity testing 
the goodness-of-fit of the model frequency distribution may written as 

k 

x2 = N L P;(c: - c:)2 fc:. (9) 
i=l 

Exact fit of the theoretical frequency to experimental measurements would cor
respond to x2 = 0. Unlike the majority of practical utilization of the chi-square 
goodness-of-fit test the quantity N is unknown. The expression in Eq. (9) may then be 
used in reverse for an estimate of N provided that c:N represents a verified model 
of the frequency distribution of the tracer rivulets. On substituting the mean value 
of the quantity x2

, following from the frequency distribution F(l) on the left hand 
side of Eq. (9), the total number of rivulets may be expressed as 

k 

N = vf L, P;(c: - c:)2/c: . (10) 
i=l 

Similarly one can determine the upper and the lower bounds of the interval estimate 
for N. Since the number of collecting annuli and hence the number of degrees of free
dom is relatively low the results of N must be expected to be only rough estimates. 
The principle of this method in a different arrangement was proposed by Porter, 
Barnett and Templeman3

• 

The estimates of N were carried out simultaneously with the evaluation of the 
parameter To leading to the optimum value of D. Since the differences in the number 
of rivulets N found for a given packing and mean density of wetting on various 
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heights of the layer were found insignificant, which is in agreement with the assumption 
of constant N along the column height, the results on individual heights of the 
layer were averaged. The averages are plotted in Fig. 6 as a function of the mean 
density of wetting. The course of these plots is in all cases analogous. The results 
with 10 mm spheres were excessively affected by systematic error which was not 
discovered during measurements and could not be used for evaluation. The relation 
between the number of trickling rivulets and the characteristic dimension dP could 
thus be studied only on the packing of Raschig rings. As a first step the limiting 
value of the numb~r of rivulets at zero density of wetting N 0 was estimated. Owing 
to the scatter of the data extrapolation of N 0 was replaced by taking the average N 

found at the two lowest mean densities of wetting (0·0005 and 0·001 mfs). In ad
dition, we estimated the typical number of liquid rivulets, N 6 , at the mean density 
of wetting equal 0·006 mfs. The estimate again was made by taking the average 
value of the number of rivulets at three largest mean densities of wet~ing(0·004, 
0·006 and 0·008 mjs). 

Both N 0 and N 6 are plotted in Fig. 7 for Raschig rings as functions of dP. The cor
relation coefficient between N 0 and dP was found equal -0·613, which is a value 
just above the limit of significance for the given number of degrees of freedom. 
Curve 1 in Fig. 7 follows the function 

(11) 

where N P is the number of spherical particles sectioned by a horizontal cut through 
the column13 . In view of the limited number of experimental results it can be tenta
tively accepted that the points N 0 approximately follow the curve 1 and hence that 
the number of liquid rivulets (or their paths) in the packing under low densities 
of wetting is dictated by the number of the elements of the packing sectioned in a hori
zontal column cross section, i.e. by the geometry of the packing. 

In contrast, the correlation coefficient between N 6 and dP was found equal 0·427 
which is definitely an insignificant value. The average number of N 6 for Raschig 
rings equals 1114 and it is shown in Fig. 7 by horizontal straight line 2. 

As the next step we examined the relation between the number of the rivulets 
and the mean density of wetting j 0 • The correlation coefficient again for Raschig 
rings only is high and equal 0·975. Individual values of N for various dP and packing 
heights for this purpose were averaged. With high probability it may be therefore 
stated that the number of liquid rivulets in the packing increases with the mean 
density of wetting, but it must be born in mind that the considerations leading to 
Eq. (10) for N included the assumption of mutual non-interference of the rivulets. 
However, coalescence, spliting and mingling of the rivulets can plaussibly take place 
either by direct contact of individual rivulets or be mediated by the static hold-up 
which is known to have a limited exchange of mass with the bulk of liquid14

•
15

. 
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Since mutual intermixing of the rivulets blurs the distinction between the tracer
containing the and tracer-free rivulets, even if the total number of the rivulets may 
remain unchanged, it causes the fit of the model and the experimental frequency 
distribution of the tracer rivulets to improve and hereby an apparent increase of N 
following from Eq. (10). 

As has been mentioned the liquid distributor was designed so as to bring the liquid 
onto the packing through 664 hollow rivets. At low discharge rates the rivets only drip 
and visual observation showed the average volume of the droplet to be independent 
of the flow rate and equal 0·06 cm 3

. With increasing flow rate the frequency of the 
droplets increases up to about fo = 0·004 mfs when the rivets discharge conti
nuous jets of liquid. Thus it is seen that the initial number if rivulets brought onto the 
packing is constant (equal 664) and only the frequency of dripping changes with 
increasing liquid flow rate. At higher densities of wetting, however, the calculated 
number of liquid rivulets considerably exceeds 664 (see Fig. 6). Since no additional 
splitting of the rivulets reaching the packing was observed the increase of N must have 
been caused by mutual intermixing of the rivulets which violated the basic pre
requisite of applicability of Eq. (10). From the correlation between N and fo for 
Raschig rings it was found that N reaches 664 at fo equal approximately 0·003 mfs, 
which is a relatively low value. It may be thus concluded that under low densities 
of wetting the number of liquid rivulets is governed by the geometry of the packing 
and increasing flow rate of liquid causes soon mutual mixing of the rivulets. Con
sidering the established independence of the apparent number of the rivulets at 
higher densities of wetting on dP the character of the rivulet mixing in the packing 
may be also regarded as independent of the characteristic size of the packing element. 
For low densities of wetting when N reflects the true number of the rivulets in the 
packing one can thus evaluate the average intensity of an individual rivulet. From 
our data we get e.g. for 10 mm Raschig rings at fo = 0·002 mfs about 0·27 cmJ. 
per second and rivulet. 

LIST OF SYMBOLS 

B, C dimensionless parameter of boundary condition 
c, c* = cfc; dimensional and dimensionless tracer concentration 
c; inlet tracer concentration 
c~, ci experimental and theoretical value of dimensionless concentration 
D coefficient of radial spread of liquid , (L) 
de column diameter, (L) 
dP characteristic size of packing, (L) 
F(x 2 ) = xv- 2 exp(-1 /2x2) j(2v/2(v/2- 1)!) approximate frequen cy distribution function of x2 

for v > 5 
f, !* = f ifo dimensional (LT- 1

), dimensionless density of wetting 
f 0 mean density of wetting, (LT- 1

) 

summation index 
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Bessel function of the first kind, zero and first order 
number of collecting annuli 
number ofliquid rivulets trickling in the packing 

Stanek, Kolar 

values of N at very low density of wetting and at / 0 = 0·006 m/s respectively 
number of spherical particles sectioned by an arbitrary horizontal cut through 
the column 

r,r*=r/R 
rj' 

r6 .. rt, r! 

. summation index 
dimensionless area of the i-th collecting annulus as fraction of column cross section 
n-th e :g~nvalue 

column radius, (L) 
dimensional (L) , dimensionless radius 
dimensionless radius of the tracer distributing disc as a fract ion of column radius 
outer, inner and mean dimensionless radii of collecting annulus as fractions 
of column radius 

To= Dz/R 2 dimensionless height of packing 
uobserved• U1beoretical frequencies of a statistical quantity 
W, W* = W /(R 2f,) dimensional (L3 T- 1

) , dimensionless wall flow 
coordinate of height 

X packing porosity 
e number of degrees of freedom 
V

2 = ~)uobserved - Utbeoretical)
2

/ utbeoreticab chi-square quantity 
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